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We performed numerical simulations of the bimolecular annihilation reaction A + A — 0 with
diffusion and short range interactions. We used the two-dimensional percolation cluster at probability
p (pc < p <1, where p. is the critical probability) as the substratum over which the particles diffuse,
and studied the particle density p as a function of time ¢t. We analyzed the effects of (i) repulsive
nearest neighbor interaction, and (ii) repulsive nearest neighbor with attractive next nearest neighbor
interactions. These effects become relevant at short times. We propose a crude approximation for
p(t) for each case and for p > p., which works reasonably well at short times. The crossover from
short times to asymptotic regimes is analyzed for case (i). Asymptotic behaviors for p(t), which are
independent of the interactions, are expected at very long times.

PACS number(s): 05.40.+j, 82.20.Wt, 82.20.Mj

I. INTRODUCTION

Recently, much effort has been dedicated to the study
of diffusion-reaction systems, see, e.g., Refs. [1-3]. This
is mainly due to the anomalous behavior that appears
when the diffusion occurs on nonhomogeneous substrata
(e.g., fractals [4, 5] and multifractals [6]) or on one-
dimensional systems. This behavior cannot be predicted
by mean-field approximations.

We consider the annihilation reaction A+ A4 — 0. The
particles diffuse independently and react instantaneously
and irreversibly when two of them are at nearest neigh-
bors (NN).

In the classic mean-field approach, one assumes that
the law of mass-action holds, i.e., that the variation of
the particle density p with time ¢ is proportional to p2.
The process is then described by dp/dt = —kp?, where k
is a constant. This approximation is valid in the reaction-
limited case, when the reaction rate is sufficiently low and
many collisions occur before a particle reacts. One has
p(t) ~t71.

On the other hand, if the diffusion time is much larger
than the reaction time, then diffusion governs the process
and we have the diffusion-limited case. In this case, the
density behaves as (3,5, 7],

p~tY, v =min(ds/2,1), (1)
where d, is the spectral dimension [8] of the substratum.
For some fractal structures, d, < 2 and for d dimensional
euclidean lattices, d, = d.

We used the two-dimensional percolation cluster [9] as
the substratum over which the particles diffuse. A pa-
rameter that characterizes the percolation cluster is the
lattice covering probability p; if p is equal to a critical
value p, = 0.593 (for the square lattice), the percolation
cluster is fractal, and if p. < p < 1 it is not fractal, but it
is still a disordered structure. All of these cases are inter-
esting from the experimental point of view, because they
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are related to actual situations in heterogeneous stru-
tures (see, e.g., Ref [2]). The spectral dimension of the
percolation cluster at critical probability is d, = 4/3 [3].
Then, the density behaves as p(t) ~ t~2/ at long times.

In the present work, the particles interact with po-
tentials U’ at NN and W' at next nearest neighbor
(NNN) sites [10]. We define the adimensional poten-
tials U = U'/kgT and W = W’ /kgT. In many physical
and chemical processes, the short range interactions are
present. This is the motivation for the introduction of U
and W into the model. The aim is to analyze the influ-
ence of these interactions and to obtain the approximate
behavior of p(t) at short times.

II. THE MODEL
AND THE MONTE CARLO SIMULATION

In the model the particles perform random walks be-
tween NN sites of percolation clusters, which percolate
in both directions of a 700 x 700 square lattice. Periodic
boundary conditions were used.

The particle density p is defined as the number of parti-
cles per cluster site and the reaction takes place between
NN occupied sites. The initial configuration of particles
has no pairs of NN occupied sites. To do this, we take a
set of all NNN sites that belong to the percolation cluster
and we occupy each of these sites with probability 2pq.
Then, the initial density is po. After that the diffusion
starts.

The energy of a given configuration can be written as
H/kgT = %Z:J Un;n; + %Z:'] Wn;n;, where n; is t‘he
occupation number of site i; n; = 1 if site ¢ is occupied
and n; = 0 otherwise. Primed sum and double primed
sum symbols denote sums over NN and NNN sites, re-
spectively.

At each Monte Carlo step one of the N(t) particles,
randomly chosen, attempts to jump to any of the four
NN sites with equal probability. The following situations
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may occur.

(1) The chosen site does not belong to the cluster and
the jump is not performed.

(2) The chosen site belongs to the cluster, the jump
is performed with probability w = min{l,exp(—AH/
kgT)}, where AH is the energy change in the movement
of the selected particle to the chosen site. If the jump is
performed and the chosen site is NN of a second particle,
both particles react and N(t) is reduced to N(t) — 2.

After each jump attempt, time is increased by 1/N(t).
This model is known as the blind ant, because particles
try to jump to any of the four NN sites regardless of
whether they belong to the cluster or not. There is an-
other model, the myopic ant, in which particles try to
jump only to sites that belong to the cluster. We also
made simulations with the myopic ant model and did
not find relevant differences.

III. RESULTS

A. With repulsive NN interaction

Let us start by considering the case of repulsive NN
interaction (U > 0, W = 0). Due to the repulsive po-
tential, many attempts of reaction occur before a pair of
particles finally reacts regardless of the substratum type.
Then, at short times (large density and small distances
between particles) a mixing effect appears and we expect
a random distribution of particles over the substratum
with the restriction of no NN occupied sites (remember
that the reaction takes place at NN sites).

Let P(N — N — 2) be the probability for a reaction
to take place in a Monte Carlo step. In an annihila-
tion reaction the change of the density in a reaction is
8p = —2/s, where s is the number of sites in the clus-
ter, and the time increases by §t = 1/N. Then one has
dp/dt = (6p/6t)P(N — N — 2). Now let us consider
the configuration of Fig. 1(a). The probability of choos-
ing a particle a in a Monte Carlo step is 1/N. Now the
probability that particle a jumps to site 1 and reacts
with b is exp(—U)/4. As there are four possibilities of
jumping with reaction (particle a or b jumps to site 1
or 2), the probability of reaction is exp(—U)/N. If all
the configurations were as shown in Fig. 1(a), one has
P(N — N —2) = mexp(—U)/N, where m is the number
of these configurations. Then dp/dt = —2mexp(—U)/s.
If the particles were distributed at random on the cluster
with no NN occupied sites, we have the mean-field ap-
proximation m/s = p%(1 — p)*. Assuming small values of
p [(1 = p)* ~ 1], one finally has

dp

~n 2e=Yp?. (2)

Let us stress that Eq. (2) is a crude approximation
because other configurations different from Fig. 1(a) can
appear. For example, in the configuration shown in Fig.
1(b) the particles cannot jump to site 2 because this site
does not belong to the cluster. In the configuration of
Fig. 1(c), the probability that particle a (or b) jumps to
site 1 is exp(—2U)/4. The contribution of this jumping
attempt to —dp/dt is of the order of p3exp(—2U) <
p? exp(—U), which is the contribution of distribution of

(a) (b) (¢)

FIG. 1. Some configurations of particles on a percolation
cluster. Full circles denote occupied sites, open circles denote
empty sites, and crosses denote sites which do not belong to
the percolation cluster.

Fig. 1(a) [assuming exp(U) > 1 and small p].

The structure of the percolation cluster at p = p.
is strongly heterogeneous and the exact contribution to
—dp/dt of all configurations is very difficult to obtain.
The alternative that we use is to propose Eq. (2) as a
first approximation to the problem and to check how well
it works. Let us note that even when p = 1 where there
are no holes (the percolation cluster corresponds to the
complete square lattice), Eq. (2) is also an approxima-
tion because configurations as the one shown in Fig. 1(c)
can appear. We will use Eq. (2) for all p (p. < p < 1).
Integrating Eq. (2) we have
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In Fig. 2 we plot log,q R versus log,qt for different
values of interaction U and p = p.. The straight lines
correspond to Eq. (3); the agreement with the numerical
results at short times is apparent. At very short times
there is a small deviation of the numerical results with

logio(time)

FIG. 2. log,, R as a function of log, ¢ in the percolation
cluster at p = p. = 0.593 for different values of U (and W =
0:U=0(0),U=2(x),U=4(A),and U =6 (x). There
are also plotted the results for p = 0.65 for the interactions
U =0 (o) and U = 4 (+). For the sake of clarity, the results
for p = 0.65 have been shifted on the ordinate axis four higher.
The straight lines correspond to the approximation given by
Eq. (3). A value of po = 0.2 was used in all cases.
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respect to the lines. This is due possibly to the crude
approximation used in Eq. (2). In Fig. 2 we also plot the
results for p = 0.65 and different values of U; the results
are shifted for clarity. We can see that the approximation
of Eq. (3) for short times also holds in this case.

At long times the density is low, the particles are
spread out and we do not expect a mixing effect. The
reaction is diffusion limited and the asymptotic anoma-
lous behavior p(t) ~ t=2/3 for p = p. coincides with the
case of no interaction regardless of the value of U for
p = pc. It is well known that at p = 1 and U = 0,
p ~ (t/logt)~! in the asymptotic regime [11]. Due to
the lack of mixing effect this same behavior is expected
to hold for al U > 0. For p. < p < 1 the percola-
tion cluster at large scales behaves as a two-dimensional
substratum. Then we expect that p ~ (t/logt)~! when
t— oo forallU >0 and p > p..

Let us consider the case p = p. and compare the mean-
field behavior of Eq. 53) with the anomalous behavior at
long times (p ~ t~2/3). We define the crossover time
t; as the time at which the intersection of these behav-
iors occurs and the crossover density p. as the density
at this time. Assuming 2pgexp(—U)t; > 1 one has
ty ~ exp(3U) and p. ~ exp(—2U). As expected, the
length of the time interval where the mean field approx-
imation holds (0 < ¢t « t;) increases as U increases.
Defining R. = (1/pc — 1/po) ™" (as pe < po, Re ~ pe ~
e"2U), we expect that R/R. will be a function of t/t,
only, independent of the values of U. In order to analyze
this universal behavior, in Fig. 3 we plot log,,(R/e~2Y)
against log,o(t/e3V). As expected this approximate scal-
ing works reasonably well for large values of U. For small
values of U the mixing effect does not appear and Eq. (3)
does not hold, for this reason the data for U = 0 do not
collapse with the results for other cases.

Now, comparing the mean-field behavior of Eq. (3)
with the asymptotic behavior p ~ (¢/logt)~? for p > p.,
one obtains that the crossover time and the crossover
density behave as t; ~ exp(eV) and p. ~ exp(—e?). Let
us note that in this case the crossover is very smooth
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FIG. 3. log,,(R/e2Y) versus log,,(t/e*Y), scaling of the
data in Fig. 2 for p = p.. The interactions used are U = 0
(full triangles), U = 2 (O), U = 4 (line), and U = 6 (o).

[from p ~ t™! to p ~ (t/logt)™!] and time t; increases
very fast with a double exponential in U. We were not
able to check this crossover with simulations due to the
lack of enough computational capacity.

B. With repulsive NN
and attractive NNN interactions

We consider the case with repulsive NN potential (U >
0) and attractive NNN potential (W < 0). This combi-
nation of interactions produces a particular distribution
of particles at short times. The most energetically favor-
able configuration of two particles is when they form a
pair of NNN occupied sites. The system tends to form
groups of particles separated by NNN distances. This
behavior has been checked by simulations.

As the reaction takes place at NN sites, it is expected
that [12]

_dp
dt

where T'; is the correlation at NNN sites, i.e., the proba-
bility of finding a pair of NNN occupied sites. In Eq. (2)
I'; was assumed to be equal to p?. Let us now consider
the value of I'; for the present case. At short times, when
we have groups of NNN particles, I'; is the probability
of finding a particle at a given site, which is p, times the
probability of finding another particle in a NNN site to
that given site, which is, in this case, of the order of 1.
So I'; ~ p and we have —dp/dt ~ p, which means an
exponential decay,

p~ e—at , (5)

where « is a parameter that depends on the values of
U, W, and the probability of the percolation cluster p

(p. <p<1).
In Fig. 4 we plot log,qp versus t for U = 4 and
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FIG. 4. log,,p versus t in the percolation cluster at pc

for interactions U = 4, W = -3 (o), and U = 4, W = 0 (full
triangles). The upper straight line denotes the linear behavior
present when an attractive NNN interaction is used, see Eq.
(5). The lower continuous line is the approximation of Eq.

(3).
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W = -3 for the percolation cluster at p. (other cases,
with W = 0, are plotted for comparison). We can see at
short times (in a range of approximately three decades
in t) a linear behavior as predicted by Eq. (5). For long
times, the groups of NNN particles disintegrate and the
asymptotic behavior without interaction, p ~ t~2/3, is
obtained. Similar results are obtained for the percola-
tion cluster at p > p..

IV. CONCLUSIONS

We analyzed the behavior of the particle density in
the annihilation reaction A + A — 0 in the percolation
cluster with probability p (p. < p < 1). The particles
diffuse coupled by NN and NNN interactions.

As is well known, the asymptotic behaviors [Eq. (1)]
are not modified by the introduction of short range in-
teractions between particles [3,10].

At short times the effect of the repulsive NN potential
(U > 0, W = 0) is to favor the particle mixing so that the
particles are randomly distributed over the substratum.

This allows the application of the mean-field approxima-
tion (2) that yields the behavior given by Eq. (3). Such
behavior is independent of the substratum type and is
present at short times. The lapse during which the ef-
fect of the interaction is present increases as the value of
the potential U increases. Specifically this time interval
extends to t < t;, where t; behaves as t; ~ exp(3U) for
p = pc and t; ~ exp(eY) for p > p..

For the case of repulsive NN interaction (U > 0) with
attractive NNN interaction (W < 0), configurations with
pairs of NNN occupied sites appear at short times and
the exponential decay approximation of Eq. (5) holds for

P 2 Pe-
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